BINARY, HEXADECIMAL, AND DATA TRANSFER UNITS

BINARY

Binary - a base-2 system, used in mathematics and computer science, where values are expressed as 0 or 1 . For computers, which work entirely with binary at their core, 1 is true or "on" and 0 is false or "off."

1 bit = 1 binary digit (0 or 1)
8 bits = 1 byte

Binary Math Table

Example: To convert the decimal number 147 to a binary value:

1. Use the table below, moving from left to right, subtracting the binary place value (i.e. 128) from the decimal number (i.e. 147) as you go.
2. Enter a binary " 1 " in any table column that can be subtracted from the remaining decimal number (in bold below) and a binary " 0 " for any that cannot be subtracted (in gray below).

147-128=19
19-64
19-32
$19-16=3$
3-8
3-4

128	64	32	16	8	4	2	1
1	0	0	1	0	0	1	1

The 8 bit binary value that represents the decimal value 147 would be 10010011.

HEXADECIMAL

Hexadecimal - a base-16 system, used in computer science as a shorthand way to represent binary values. One hexadecimal digit represents four binary digits. Hexadecimal letters can be written as uppercase or lowercase.

Examples in IT

- 30:60:7b:43:5f:e4 (MAC address)
- fe80::80e2:2600:280:44fd (IPv6 address)

CONVERSIONS

Decimal	Binary	Hexadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	117	F

DATA TRANSFER UNITS

Data Transfer Rate (DTR) - the amount of digital data, or throughput, that is moved from one place to another in a given time.
$\mathbf{D T R}=\mathbf{D} / \mathbf{T}$ (\mathbf{D} is the size of the data, \mathbf{T} is the time to transfer the data)

To find the DTR of a 100 Mb file that is transferred in two minute:

1. Convert the time into seconds. ($2 \mathrm{~min} \times 60 \mathrm{sec} / \mathrm{min}=120$ seconds)
2. Use DTR = D / T to solve. ($100 \mathrm{Mb} / 120$ seconds $=0.83 \mathrm{Mbps}$)

To find how many bits are in $\mathbf{2}$ TB:

- Convert TB to B. (1 TB = 1 trillion bytes, so 2 TB $=2$ trillion bytes)
- 2 trillion bytes * 8 bits per byte $=16$ trillion bits

Metric Unit	Value
Kbps (Kilobits per second)	1000 bits
Mbps (Megabits/s)	1 million bits
Gbps (Gigabits/s)	1 billion bits
Tbps (Terabits/s)	1 trillion bits

Binary Unit	Value
Kibps (Kibibits per second)	1024 bits
Mibps (Mebibits/s)	$1,048,576$ bits
Gibps (Gibibits/s)	$1,073,741,824$ bits
Tibps (Tebibits/s)	$1,099,511,627,776$ bits

HOW MANY BITS AND WHY?

IPv4 Address - 32 bits

- Decimal address: 182.186.2.243
- Binary representation: 10110110.10111010 .00000010 .11110011
- 8 bits $\times 4$ octets $=\mathbf{3 2}$ bits

MAC Address - 48 bits

- Hexadecimal address: 30:60:7b:43:5f:e4
- Binary representation:
$00110000: 01100000: 01111011: 0100$ 0011:0101 1111:1110 0100
- 8 bits $\times 6$ octets $=48$ bits

IPv6 Address - 128 bits

- Hexadecimal address: fe80::80e2:2600:280:44fd
- Binary representation:

1111111010000000 :
0000000000000000 :
0000000000000000 :
0000000000000000 :
1000000011100010 :
0010011000000000 :
0000001010000000 :
0100010011111101

- 16 bits $\times 8$ groups $=128$ bits

